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Abstract. Key derivation refers to the process by which an agreed upon large random number, often
named master secret, is used to derive keys to encrypt and authenticate data. Practitioners and standard-
ization bodies have usually used the random oracle model to get key material from a Diffie-Hellman key
exchange. However, formal proofs in the standard model require randomness extractors to formally extract
the entropy of the random master secret into a seed prior to deriving other keys. Whereas this is a quite
simple tool, it is not easy to use in practice –or it is easy to misuse it–.

In addition, in many standards, the acronym PRF (Pseudo-Random Functions) is used for several tasks,
and namely the randomness extraction. While randomness extractors and pseudo-random functions are
a priori distinct tools, we first study whether such an application is correct or not. We thereafter study
the case of Z

?
p where p is a safe-prime and the case of elliptic curve since in IPSec for example, only these

two groups are considered. We present very efficient and provable randomness extraction techniques for
these groups under the DDH assumption. In the special case of elliptic curves, we present a new technique
—the so-called ’Twist-AUgmented’ technique— which exploits specific properties of some elliptic curves,
and avoids the need of any randomness extractor. We finally compare the efficiency of this method with
other solutions.

1 Introduction

Key exchange is an important problem in practice and several schemes have been designed to solve
it since the seminal work of Diffie and Hellman [14]. Recently, different works have been published in
order to analyze the security of those schemes in various settings (password, public-key, hybrid setting)
and security models (random oracle, common reference string, standard model). But for several years,
efficiency and security in the standard model have become the main goals to achieve in cryptography.
The most widely used network security protocols nowadays are TLS [37], a.k.a SSL, SSH, and the
Internet Key Exchange (IKE) protocols [21, 27] from the IPSec standard of the IETF. In all the
descriptions, the extraction of the master-key from a common (random) secret element is performed
using a PRF, which is often instantiated by HMAC [5] (this is for example the case in IKE). However,
it is well-known that such a primitive is not a priori well-suited for such a task [16], and the formal
analysis requires unusual assumptions.

1.1 The Key Derivation Problem.

Diffie-Hellman (DH) based key exchanges establish a secure communication channel between two par-
ties by securely negotiating a large random element in a given cyclic group, called pre-master secret.
Then, this secret is used to derive keys for encrypting and authenticating data. These keys must be
bit-strings of some specific length uniformly distributed and used as input parameters to symmetric
ciphers (for privacy), message authentication codes (for authentication), and pseudo-random func-
tions (for expansion of a seed into a longer bit-string). However, they cannot be initialized with the
simple bit-string encoding of the pre-master secret. Even though this secret is indistinguishable from
a random element in the cyclic group under some classical computational assumptions, such as the
Decisional Diffie-Hellman assumption (DDH), its encoding is not indistinguishable from a random
bit-string with a uniform distribution. The entropy of the bit-string encoded secret is indeed high but
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not high enough to immediately obtain an almost uniformly distributed random bit-string: pseudo-
entropy generators are not pseudo-random generators even when only considering the property of
computational indistinguishability [22].

Most of the cryptographic protocols do not take into account this practical problem since it only
appears during the implementation. Cryptographers indeed use “elements in sets” when designing
their algorithms while standardization bodies represent and encode these elements. Engineers are left
clueless when elements in a given set do not necessarily admit a compact encoding —in bijection with
a set of `-bit strings— even for a well-chosen `. Practitioners have no choice but to make educated
guesses on which encoding to use and so, may introduce security breaches. This is the case of the
Diffie-Hellman version of the SSL protocol [37] where the binary encoding of the random element is
used as it. IKE raises this problem too. It explicitly deals with the extraction issue via a mechanism
analyzed in [16], and follows the general framework described below.

1.2 Randomness Extraction and Key Derivation

In order to correctly derive several keys from a common (random) secret element —the so-called
pre-master key—, two steps are required, with two different tools:

Randomness Extraction – in a first stage, one uses a family of functions F keyed by random and

public nonces and applies it to the pre-master secret, to get the master key;
Key Derivation – in the second stage, the output is used as a key to a family of functions G, with

known inputs in order to derive further key material to create a secure channel.

This two-phase protocol also appears in the random generator architecture of Barak and Halevi [2].
The aim of the randomness extractor phase is to generate a short seed concentrating the entropy of the
source and then in the key derivation, this seed will be used to generate keys. It is important to separate
these stages, since different cryptographic primitives are needed. However, in many specifications, F
and G are asked to be Pseudo-Random Function Families (with the same notation prf, such as in
IKE [21, 27]).

Before going into more details, let us review informally the main difference between randomness
extractors and PRF. A PRF is a family of functions, from a set D on a set R, such that it is com-
putationally hard to distinguish the inputs/outputs of a function taken at random from the set of
all functions from D to R and of a function taken at random in the PRF family. It is important
to note that the key, or the index of the function taken in the PRF family, must be kept secret,
otherwise the distinction becomes easy. A randomness extractor has the property that the output
distribution is close to the uniform one, if the input distribution has enough entropy. If the index is
known, the randomness extractor is called a strong randomness extractor. Hereafter, we only look at
strong randomness extractors, where the index is implicitly made public, and we thus simply call them
randomness extractors.

As a consequence, one can easily note that the notation prf has two different purposes: (1) first
stage, prf is used as a randomness extractor, with a public and random key and a high-entropy input
(but not as a PRF); (2) second stage, prf is used as a PRF, to build a PRG. The HMAC function [5],
designed and analyzed as a secure MAC, is furthermore the default prf in several standards.

In this article, we primarily focus on the randomness extraction phases for DH-based protocol
and we show efficient and provable techniques for this task. The key derivation phases can be solved
by using techniques coming from the random oracle methodology (see the recently proposed internet
draft by Dang and Polk in [13]) or by using a PRP in the counter mode.

1.3 HMAC as a Randomness Extractor

HMAC, as well as some other constructions, have been recently studied as randomness extractors
by Dodis et al. in [16]. This is the first formal analysis of practical randomness extractors. They
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namely prove that variants of these constructions are almost universal hash functions under various
assumptions. They basically show how to construct a variable-input length almost universal hash
function family from a fixed-input length almost universal hash function family (or even random
functions/permutations). Thereafter, a little modification of the Leftover Hash Lemma (LHL) [23]
with a randomly chosen function from a family of (almost) universal hash functions can be used to
extract the entropy of a random source.

Therefore, if the key of the (almost) universal hash function is correctly chosen (not biased by
the adversary), the whole construction is correct. But the latter remark is important and not trivial
in practice, since this key is not always (cannot always be) authenticated [12]. Finally, although this
solution can be proven in the standard model, it is overkill compared with our solutions.

1.4 Randomness Extractors

The notion of a randomness extractor is thus very important from a practical point of view and is
often ignored or misused by cryptographers, since solutions are quite theoretical and requirements are
strong.

In complexity theory, randomness extraction from a distribution has been extensively studied
(see [31] for a survey). For certain random sources, it has been shown that it is impossible to extract
even one bit of randomness [29]. One way to solve this last problem is to use a small number of
uniformly random bits as a catalyst in addition to the bits from the weak random source as in the
LHL as said in [26]. However, in some cases, we can eliminate the need for the random catalyst by
restricting the class of weak random sources. Trevisan and Vadhan and later Dodis [38, 15] have called
such functions deterministic extractors. In cryptography, randomness extractors have been studied
under different adversaries to construct truly random generators [3], and deterministic extractors have
been used to built All-Or-Nothing-Transforms (AONTs) schemes and Exposure-Resilient Functions
(ERF) [11, 17].

In the key exchange setting, the problem is to transform the random common secret of small
entropy rate into a common secret of entropy rate 1, where the entropy rate is the ratio k/n of a
random source of block-length n and of min-entropy k (basically the number of random bits). For
example, under the DDH assumption in a 160-bit prime order q subgroup in Z

?
p, we know that the

input random source (in a DH-based key exchange protocol) has 160 bits of min-entropy. So, for a
1024-bit prime p, the entropy rate of the initial source is 160/1024. Because of the specific structure
of the source, deterministic extractors (which exploit the algebraic structure) may be used to derive
cryptographic keys. They would avoid problems with probabilistic randomness extractors if the key of
a universal hash function can be controlled by the adversary. On the other hand, as we will see, large
groups may be required, which would make the overall protocol too inefficient. We will thus introduce
a new technique to avoid extractors, which takes advantage of the specific structure of elliptic curves.

1.5 Contribution and Organization

In this paper, we first focus on various techniques to derive a uniformly distributed bit-string from a
high-entropy bit-string source. We explain their advantages and drawbacks. Then, we apply Kaliski’s
technique [25], with quadratic twists of elliptic curves, to avoid them. It is quite well-suited to au-
thenticated key exchange, since it already works on cyclic groups. Therefore, it is more efficient than
the Leftover Hash Lemma while retaining the same security attributes (and namely, no additional
assumption).

The basic idea is to run twice in parallel, an authenticated Diffie-Hellman protocol on an elliptic
curve E and on the quadratic twist Ẽ of E. This produces two points K and K̃ uniformly distributed
on E and Ẽ respectively. With well-chosen elliptic curves, the random choice of the abscissa of either
K or K̃ is an `-bit long random string. Randomness extractors are thus not needed anymore.
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This “Twist AUgmented” (TAU) technique is provably secure assuming only the intractability of
the decisional Diffie-Hellman problem on elliptic curves.

Even though quadratic twists were previously introduced in the literature [9, 10] in other contexts or
with binary curves, we also show here that appropriate prime order curves can be efficiently generated.

2 The Leftover Hash Lemma

In this section, we focus on the most well-known randomness extractor, which makes use of the Leftover
Hash Lemma [24, 23]. It provides a probabilistic extractor, which is optimal in general. Whereas in
theory, (almost) universal hash functions (AUH) should be used, in practice, one often asks for pseudo-
random functions (PRF). Let us see whether the practical way to do it is correct or not, from a
theoretical point of view. The definitions are given in section A.

Lemma 1 (LHL [24]). Let D be a probabilistic distribution over {0, 1}n with min-entropy at least

σ. Let e be an integer and m = σ − 2e. Let H = {hk}k, with hk ∈ Fn,m for any k ∈ {0, 1}`, be an

almost universal hash function family. Let H be a random variable uniformly distributed on H, X
denotes a random variable taking value in {0, 1}n, and H,X are independent. Then, (H,H(X)) is

2−(e+1)-uniform on H× {0, 1}m.

Impagliazzo and Zuckerman in [24] prove the lemma with an almost universal hash function where
ε = 1/2n. In [16], it is proved for any ε-almost universal hash function family for ε � 1/2m. See
also [34] for a proof. Therefore, combined with the analysis of NMAC as an ε-AUH function, this may
justify the design of IKE when HMAC is used under a specific assumption on the independence of the
two keys in NMAC. We show in the following that the same result holds for some PRFs provided ε be
taken into account to estimate the size of the output. However, we begin to prove a slight generalization
of the LHL, similar to [16].

Lemma 2 (LHL with ε-AUH). Let D be a probabilistic distribution over {0, 1}n with min-entropy

at least σ. Let e be an integer and m ≤ α − 2e where α = min(σ, log2(1/ε)). Let H = {hk}k, with

hk ∈ Fn,m for any k ∈ {0, 1}`, be a ε-almost universal hash function family. Let H be a random

variable uniformly distributed on H, X denotes a random variable taking value in {0, 1}n, and H,X
are independent. Then, (H,H(X)) is 2−e-uniform on H× {0, 1}m.

Proof. The proof relies on two claims. The first one comes from [34]. It applies to a random variable X
distributed according to a distribution D, taking values on the finite set S and of collision probability
κ = κ(X). If X is δ-uniform on S, then κ ≥ (1 + 4δ2)/|S|.

The second claim studies the collision probability κ = κ(H,H(X)) where H denotes a random
variable with uniform probability on H, X denotes a random variable on the set {0, 1}n, and H
and X are independent. We can easily adapt the proof of [34] to prove that the statistical distance
between the distribution of (H,H(X)) and the uniform distribution on H× {0, 1}m is δ, which is at
most (1/2) ·

√

2m · (κ + ε). So it can be upper-bounded by (1/2) ·
√

2m · (2−σ + ε), since the collision
probability κ is less than the guessing probability γ as noted in definition 17. If we denote by α =
min(σ, log2(1/ε)), then we can upper-bound δ by
(1/2) ·

√
2m · 2 · 2−α and so if we want a bias of 2−e we need m ≤ α− 2e. ut

Remark 3. This requires ε � 1/2m as it is observed in [16], but ε ≤ 1/2m+2e is enough. Anyway,
this definitely excludes function families where the key-length is the same as the output-length (as
compression functions), unless they are completely balanced, with ε = 0, which is quite a strong
assumption.
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2.1 Pseudo-Random Functions vs. Almost Universal Hash Functions

We have already discussed the practical meaning of the universal hashing property for compression
functions. However, many standards (such as IKE [21, 27]) use the acronym prf at several places, for
different purposes: randomness extractors and actual PRF. Let us recall here the crucial difference
between pseudo-random functions and randomness extractors: the former use random secret keys,
while the latter use random but known keys. We thus show below that the strong assumption of PRF
implies the almost universal hashing property. Therefore, the Leftover Hash Lemma 2 applied with
some PRF (namely keyed with uniform random bit-strings and with advantage sufficiently small)
provides a good randomness extractor.

Theorem 4. If a family of functions F is a (2, ε, 2Tf )-PRF in Fn,m, then it is an ε-AUH function

family, where Tf denotes the maximal time to evaluate an instance of F for all x ∈ {0, 1}n.

Proof. We want to show that if the hash function family F is not ε − AUH, i.e. there exist x, y such
that Prk[fk(x) = fk(y)] > 1/2m + ε, then there exists an adversary against the PRF property with
advantage at least ε.

Let us consider the following family of distinguishers, Dx,y for each pair (x, y) of elements in
{0, 1}n. The distinguisher Dx,y queries the oracle (either fk for a random k or a random function) to
get X = f(x) and Y = f(y), and simply answers 1 if X = Y and 0 otherwise.

Suppose that F is not an ε-AUH function family. It means there exists a pair (x, y) for which
Prk[fk(x) = fk(y)] > 1/2m + ε. Let us consider the advantage of the corresponding distinguisher
Dx,y: if f is a truly random function in Fn,m, the set of all functions from {0, 1}n to {0, 1}m, then
Pr[Dx,y = 1] = 1/2m; if f is a randomly chosen fk in F , then Pr[Dx,y = 1] > 1/2m + ε. As a
consequence, the advantage of Dx,y is not less than ε, which is in contradiction with the above PRF
property. ut

Therefore, we have the following corollary by combining lemma 2 with the previous theorem.

Corollary 5. Let F be a family of functions in Fn,m, and Tf denote the maximal time to evaluate

an instance of F on any x ∈ {0, 1}n. If F is a (2, ε, 2Tf )-PRF, when applied on a random source with

min-entropy at least σ, then it is a good randomness extractor, of bias bounded by 1/2e, as soon as

m ≤ min(σ, log2(1/ε)) − 2e.

Remark 6. This result is not in contradiction with the example described in [16], since if ε = 1/2m

with m bits of output, then clearly min(σ, log2(1/ε)) ≤ m. The above corollary just claims that the
bias is less than 1. As a consequence, we cannot extract m bits.

2.2 The Leftover Hash Lemma in Practice

Even if there exist efficient universal hash functions, practitioners and designers usually apply pseudo-
random functions, or HMAC, which are clearly less efficient than a simple linear operation. Anyway,
a correct application would be valid in both cases (according to the analysis for HMAC [16] —
incomplete because of the above problem with compression functions). However, the Leftover Hash
Lemma requires the key of the function family to be uniformly distributed, which is not an easy task,
since it may be (partly) chosen by a malicious user. This is the case in IKEv1 [21], for compatibility
reasons, and thus nothing can be formally proved.

A simple way to guarantee such a uniform distribution is for the users to sign this key (as done in
IKEv2). However, such a signature is not always possible, or available, according to the context such
as in password-based authenticated key exchange.

Another solution to cope with the randomness extraction error is, as noticed by Shoup [34] and
also by Barak et al. in [3], to use the same “certified key” or the same hard-coded key in the software.
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Indeed, they suggest an extension of the LHL which allows the derivation of many random bit-strings
with a unique random key, and thus a public and fixed hash function. However, the quality of the
extracted randomness decreases linearly with the number of extractions – due to the hybrid technique.
Nevertheless, this is often the unique solution.

3 Deterministic Randomness Extractors

Other alternatives to the LHL are also available, namely when no certification is available, as in the
password-based setting, by using deterministic randomness extractors. Several of them exist in the
literature and have already been employed by standardization bodies to convert a random element of
a group into a random bit-string as in [32].

3.1 Hash-Diffie-Hellman

The simplest one, and perfectly reasonable in practice, is the use of a cryptographic hash function. In
the random oracle model [6], this gives a perfect random bit-string, under the so-called computational
Diffie-Hellman assumption. In the standard model, a weaker assumption has been defined, the Hash
Diffie-Hellman assumption [1, 18]. But this assumption is, in some sense, the assumption that a hash
function is perfectly suited to this goal, while this is not the applications that designers of hash
functions have in mind. Everybody may agree on the practical validity of such a construction, but it
definitely requires non-standard assumptions, from a theoretical point of view. We would thus prefer
to avoid this solution.

3.2 A Simple Deterministic Extractor

Basically, when we want an extractor of the entropy from a random (uniformly distributed) element
in a cyclic group G of order q, a bijection from G to Zq would do the job, since it would transfer the
uniform distribution G into a uniform distribution in Zq (an appropriate choice for q thereafter allows
the truncation to the log q-rightmost bits to get an almost uniformly distributed bit-string). Let us
briefly review such a well-known bijection in the specific case where G is the group of the quadratic
residues modulo p, for a safe prime p, close enough to a power of 2. This result is in the folklore, but
some lemmas are useful for the following, we thus briefly review the whole technique.

Theorem 7. There is an efficient bijection from a subgroup G of prime order q in Z
?
p to Zq, when

p = 2q + 1.

Proof. Let us use a finite field Zp, with p = 2q +1 (a safe prime) and work in the cyclic group of order
q: the group G of the quadratic residues modulo p. Since p = 3 mod 4, this is a Blum prime, and thus
−1 does not lie in G.

We can define the following extractor, for any y ∈ G: if y ≤ q, then f(y) = f1(y) = y, else
f(y) = f2(y) = p − y. Since −1 is not in G, and p − y = −y = (−1) × y mod p, f1 maps G to G

(the identity function) and f2 maps G to Zp\G. Therefore, f is an injective mapping and for y ∈ G,
f1(y), f2(y) are in Zq. A simple counting argument proves that this is a bijection. ut

The following lemma analyzes the security when truncation is used in order to get ` bits uniformly
distributed. The proof of the lemma is done in appendix G.

Lemma 8. Let us denote by Uq the uniform distribution on the space Zq and by U2` the uniform

distribution on the space {0, 1}` ∼ {0, . . . , 2` − 1}. If |q| = ` and |q − 2`| ≤ 2`/2, then the statistical

distance is bounded by 1/
√

2`.

Therefore, the truncation of f gives a deterministic randomness extractor from G onto Zq. However,
this requires the use of a safe prime, and thus quite large groups, which make DH-protocols quite
inefficient.
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4 The “Twist-AUgmented” Technique

In this section, we describe a new mechanism which excludes all the above drawbacks: it does not
require any authenticated random value (needed for probabilistic extractors); it is provably secure
in the standard model, under classical assumptions; it works in small groups (contrary to the above
deterministic example.)

In the early 90’s, Kaliski [25] used elliptic curves and their twists for making a random permutation
from a random function. This construction can be used to make a uniform distribution in Z2q from
points uniformly distributed on a curve or its quadratic twist, both on the finite field Fq. More recently,
quadratic twists have also been used in the context of password-authenticated key exchange [10]. The
goal was to make the Bellovin et al.’s encrypted key exchange protocol [4] immune to partition attacks
but did not explain how to specify the key-derivation function. It has also been applied to the context
of public-key encryption [9].

We can take advantage of elliptic curves and their quadratic twists, as done by Kaliski [25], to
come up with a technique that does not require stronger assumptions. This technique, called “Twist-
AUgmented” (TAU), uses the fact that a random point on a curve over Fp has an abscissa uniformly
distributed in a set E and that a random point over its twist has an abscissa uniformly distributed
in the set Ẽ as well, i.e. it is the complementary set of E in Fp. Therefore by choosing one of the
two abscissae at random, we will get an element almost uniformly distributed in Fp. For well-chosen
fields, we thus efficiently get an almost uniformly distributed bit-string, which may be 256 bits long:
it is enough to derive two keys (for privacy and for authentication) without any pseudo-random
function by simply splitting this bit-string. As a consequence, it avoids the requirement of randomness
extractors, and even pseudo-random functions, since we directly get a uniformly distributed bit-string,
large enough.

4.1 Quadratic Twist of an Elliptic Curve

Let p > 3 be a prime number. An elliptic curve is a set of points E = Ea,b = {(x, y) : y2 = x3 + ax +
b} ∪ {∞E}, where a and b are elements of Fp and ∞E is a symbol for the point at infinity. It is well
known that an elliptic curve E can be equipped with a group law —the so-called chord and tangent
group law— such that the computational and decisional Diffie-Hellman problems are believed to be
hard problems in general.

Let c be a quadratic non-residue in Fp, and define the quadratic twist of Ea,b to be the curve
given by the following equation: Ẽa,b = {(x, y) : cy2 = x3 + ax + b} ∪ {∞

Ẽ
}.

The change of variables x′ = cx and y′ = c2y transforms the equation of Ẽa,b into y′2 = x′3+ac2x′+
bc3. This demonstrates that Ẽa,b is isomorphic to an elliptic curve and can therefore be equipped with
a group law. The main interest of the introduction of the quadratic twist here follows directly from
the definition: if x is not the abscissa of a point of Ea,b, then x3 + ax + b is not a square in Fp and
therefore (x3 + ax + b)/c is a square in Fp. Then it is the abscissa of a point of Ẽa,b. The converse is
also true.

Note 9. In the cryptographic application we have in mind, this is crucial to keep the equation of Ẽ

in the non-Weierstrass form. For the internal computations, of course, we apply the above-mentioned
transformation so that we can use the classical algorithms, but the result of any computation should
be transformed back to the previous representation before usage in cryptographic primitives.

Cardinalities. Hasse-Weil’s theorem gives a good bound on the group order of an elliptic curve [36].
Let us write q = #E = p+ 1− t, then we have |t| < 2

√
p. We could apply the same result to Ẽ, but in

fact the number of points of a curve and its twist are far from being independent. Starting with the
fact that a scalar is either a point on E or a point on Ẽ, it is easy to derive that q̃ = #Ẽ = p + 1 + t.
For maximal security, it is desirable that the group orders are prime numbers. Hence, since p is odd,
this implies that t is odd. Then both q and q̃ are odd.
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Choice of the Prime Field. We have restricted ourselves to curves defined over prime fields. The
notion of a quadratic twist of an elliptic curve also exists for more general finite fields and in particular
for fields of characteristic 2. However, they are of less interest in our context where we want to use
the property that the abscissae of the points of the groups we are dealing with cover the whole finite
field. In characteristic 2, all the non-super-singular curves have a group order that is divisible by (at
least) 2. Hence keeping the covering property would imply to work with non-prime order groups. Even
if it looks feasible to patch the protocol for that situation, it is certainly less elegant than using a
prime-order group with curves over prime fields.

To achieve our goal, we need that the abscissa of a point taken randomly in E or in Ẽ behaves like
a random bit-string of length `. Since all the elements of Fp are obtainable as abscissae of points of
E and Ẽ, we will be able to show that the random abscissa in E or Ẽ gives a random element in Fp

(see Lemma 10, the proof appears in Appendix G.) To convert this element to a bit-string of length `
without any further device and keeping the randomness unbiased, it is necessary to have p very close
to 2`. Hence we propose to use a prime p which can be written p = 2` − ε, where ε is an integer less
than 2`/2 (see previous Lemma 8, which proof appears in Appendix G.)

This extra-condition on p is not a practical inconvenience. In fact, the primes that are used in
practice are almost always of this form, because they allow a faster arithmetic than more general
primes. For instance, the curves proposed by the NIST are defined over a finite field with primes
which are often suitable to our case (the prime field, not the curves!).

Finding a Suitable Elliptic Curve and Twist. The basic approach for constructing a curve E

over Fp such that both q and q̃ are primes is to pick random curves, count their cardinalities with the
SEA algorithm, and keep only the good ones. With this strategy, if numbers of points were completely
independent and behaved like random numbers in the Hasse-Weil interval, we would expect to have
to have to build O(log2 p) curves before finding a good one. If log p ≈ 200, it means that we have to
run the SEA algorithm about 20000 times to construct a good curve, which is prohibitive.

Fortunately, the SEA algorithm [30] is suited for this kind of search, since it computes the order of
E modulo small primes and recombines the group order by Chinese Remaindering. Hence as soon as
we know the order of E modulo a small prime `, we abort the computation if this is zero. Furthermore,
the group order of Ẽ modulo ` is readily deduced from #E mod `, and similar abortion can be played
also with the twist. As a consequence, most of the curves are very quickly detected as bad curves,
because either the curve or its twist has a non-prime group order.

In fact, the situation is more tricky, since the order of the curve and of its twist are not independent.
For instance, imagine that p ≡ 2 mod 3, then the condition #E ≡ 0 mod 3 is equivalent to t ≡ 0 mod 3,
which in turn is equivalent to #Ẽ ≡ 0 mod 3. A rigorous estimation of the running time of the SEA
algorithm equipped with the early-abort strategy is out of the scope of this work. We just propose
some numerical experiments to justify the claim that the construction of secure pairs of curve and
twist is easily feasible on a reasonable computer.

We picked randomly about 30000 200-bit primes, and for each of them we picked a random curve
and computed its cardinality and the cardinality of its twist. In the following table, we summarize the
percentage of the curves for which both number of points are not divisible by all primes up to Pmax.

Pmax 1 2 3 5 7 11 13 17 19

remaining curves 100 % 33 % 12 % 7.2 % 4.9 % 3.9 % 3.3 % 3.0 % 2.7 %

From this data, we see that for 97.3% of the curves, the SEA algorithm will be stopped at a very
early stage, thus spending only a tiny fraction of the running time of the whole computation. With
usual reasonable heuristics, it is expected that about 500 full computations are required on average
before finding a good pair of curve and twist. A single full SEA computation takes about 20 seconds
for this size on a personal computer, hence in about 3 hours, we expect to build good parameters for
a key-size of 200 bits. An example curve is given in Appendix H.
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If there is a need to construct the curves in a constraint environment, then it is probably a
better idea to use the theory of Complex Multiplication. We will not give the details here, since the
construction is well described both in the literature and in the standards. For our purpose, it suffices
to choose a group order and a twisted group order which are both primes.

4.2 TAU Distribution

Now, we show that the distribution of the master secret key K, if we take it at random either on the
curve E or Ẽ, is uniformly distributed on {0, 1}`, in a statistical way. On the one hand, we prove that
it is statistically indistinguishable from the uniform distribution on {0, . . . , p − 1} and then that the
latter distribution is statistically indistinguishable from the uniform distribution on {0, 1}` by using
lemma 8 by replacing q by p. The proofs of the following lemmas are done in appendix G. Let us
denote by D the distribution of K:

D = {K = [Rb]abs b
R← {0, 1},R0

R← E,R1
R← Ẽ}

= {K = xb b
R← {0, 1}, x0

R← [E]abs, x1
R← [Ẽ]abs}.

Lemma 10. The distribution D is statistically close to the uniform distribution Up in Fp ∼ Zp:

δ =
1

2
×

∑

x∈Fp

∣

∣

∣

∣

∣

Pr
K

R
←Up

[K = x]− Pr
K

R
←D

[K = x]

∣

∣

∣

∣

∣

≤ 1√
2`−1

.

Corollary 11. The statistical distance between the uniform distribution on U` and the TAU technique

if |p− 2`| ≤ 2`/2, is upper bounded by (1 +
√

2)/
√

2` according to Lemmas 10 and 8.

Note 12. However, in an actual scheme, the bit b many not be perfectly uniformly distributed, but
biased in a negligible way. Anyway, it will be important to show that such a bias will not impact much
the distribution of the key (see the proof of Theorem 13.)

4.3 Working using Abscissae Only

In the basic description, even if only the abscissa of a point is used at the end to derive the key, we
worked all along with points on the elliptic curves. In fact, this is not necessary. Let P be a point on an
elliptic curve, then to compute the abscissa of a multiple of P, only the abscissa of P is required. This
is a very classical result, that is used for instance in fast versions of the ECM factoring algorithm [28].

As a consequence, it is possible to improve the TAU protocol as follows (see figure 1): each time
there is a point on a curve, we replace it by just its abscissa. In particular, now X0, X1, Y0 and Y1

are just elements of Fp which are abscissae of points on the curve or on the twist. We then denote by
x ◦X the abscissa of the point Y which is x times a point X whose abscissa is X. The space saving
is tiny (namely just the one bit that was used to code the ordinate), but this has the advantage to
put in light the fact that ordinate’s role is irrelevant in the TAU protocol. Furthermore, this improves
the time complexity by more than 30%, at least from Bob’s view point. Indeed, while in the basic
Diffie-Hellman protocol both Alice and Bob have to compute 2 exponentiations, in the TAU version,
Alice has to compute 3.5 on average (an additional cost of 75%), and Bob still 2 only (just a negligible
additional cost due to the computation with abscissae only.) The use of the 2 coordinates of the points
would require an additional square root computation, and thus an exponentiation in the field. Such
an operation is much less expensive than the computation of the multiple of a point in the curve, but
its cost is not negligible.

Note that not all EC-based protocols can be transformed to work only with abscissae. For instance,
El-Gamal signatures involve additions in the elliptic curve, and this cannot be done only with the input
of abscissae of the points; only an exponentiation is feasible. TAU can use this improved technique.
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4.4 Efficient and Unconditionally Secure Pseudo-random Functions

Roughly, our TAU technique runs twice the basic scheme (but with an actual cost of only 37% more),
and provides a long bit-string which is uniformly distributed, under the Elliptic Curve Decisional
Diffie-Hellman assumption. Such a long bit-string K allows an efficient and secure key re-generation,
to get both a key confirmation km and a session/master key sk, without any additional assumption
about pseudo-random functions: K can be simply split into km and sk, with convenient sizes.

For the same security level, the LHL would require a group of order around q2, and thus with
a complexity exactly twice as much as the basic scheme. With the above improved technique using
abscissae, our technique does not double the whole basic scheme, but the complexity is just increased
by a factor 1.38. We thus get an average improvement of 30% if we compare to the LHL.

5 The “Twist-AUgmented” Authenticated Diffie-Hellman Protocol

5.1 Description

Using the properties of “Twist-AUgmented” deterministic randomness extractor, we then convert any
Diffie-Hellman-like protocol, which provides a random element in a cyclic group, into a protocol which
provides a random bit-string, without any additional assumptions. See figure 1 for the description,
which implements the above improvement using abscissae only.

5.2 Semantic Security

On Figure 1, we present the TAU-enhancement of a classical authenticated Diffie-Hellman key ex-
change: basically, some flows are doubled, on each curve. However, Bob randomly chooses the curve
which will be used for the Diffie-Hellman computation, and compute correct values on this curve only.
For the other part, he plays randomly. This protocol achieves the property of semantic security under
the elliptic-curve decisional Diffie-Hellman assumption and does not use ideal-hash functions. In order
to prove this claim (the full proof is postponed to the appendix D) we consider games that have
distances that can be measured easily. We use Shoup’s lemma to bound the probability of events in
successive games [33, 35]. The first game G1 goes back to the less efficient, but equivalent, protocol
using abscissae and ordinates, and the second game G2 allows us to avoid active attacks, granted sig-
natures, so that in the following games we only have to worry about replay attacks. Proving the claim
boils down to coming up with the appropriate games G3 through G8, in which we obtain a random
master key K uniformly distributed in {0, . . . , 2` − 1}. The game G9, providing random session keys,
is then easy to come up with and therefore the proof of the claim easily follows. In the last game G9,
the adversary has indeed clearly no means to get any information about the random bit involved in
the Test-query except to flip a coin.

Theorem 13. For any adversary A running within time bound t, with less than qs different sessions

Advake
TAU(A) ≤ 4 · Succeuf−cma

AUTH (2t, qs, qs) + 10 · Succeuf−cma
MAC (2t, 1, 0)

+2 · Advecddh
P,〈P〉(t

′) + 2 · Advecddh
Q,〈Q〉(t

′)

+2qsAdv
prf
F (t′, 2) + 20Adv

prf
F (2t, 1) +

20 + 5qs√
2`

,

where t′ ≤ t + 8 × qsTm, and Tm is an upper-bound on the time to compute the multiplication of a

point by a scalar.

Conclusion

This paper presents a new technique in order to get an appropriate session key with Diffie-Hellman
key exchanges. It provides the best efficiency, since it is more than 30% more efficient than using the
Leftover Hash Lemma, while it does not require any authenticated randomness.
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Alice Bob

Common twisted curves E0, E1 over the finite field Fp

of respective prime orders q0, q1

Xi = [Ei = 〈Pi〉]abs = 〈Pi〉abs, where Pi = [Pi]abs, for i = 0, 1

Signing Key : skA Signing Key : skB

Verification Key : vkA Verification Key : vkB

accept← false accept← false

terminate← false terminate← false

s
R
← {0, 1}?, x0

R
← Zq0 , X0 = x0 ◦ P0

x1
R
← Zq1 , X1 = x1 ◦ P1

σA = AUTH.Sign(skA; (s, X0, X1))
Alice, s

−−−−−−−−−−→
X0,X1, σA

Check σA

β
R
← {0, 1}

yβ
R
← Zqβ

, Yβ = yβ ◦ Pβ

Y1−β
R
← X1−β

Kβ = yβ ◦Xβ,

km = MacKey(Kβ)
σB = AUTH.Sign(skB; (s,X0, X1, Y0, Y1))

Check σB

Bob, s
←−−−−−−−−−−
Y0, Y1, σB , µB

µB = MAC.Sign(km; (“1”, s, Bob))
d

R
← {0, 1}, K = xd ◦ Yd

km = MacKey(K)
Try to check µB : in case of failure

d = 1 − d, K = xd ◦ Yd

km = MacKey(K)
Check µB

µA = MAC.Sign(km, (“0”, s, Alice))

accept← true
s

−−−−−−−−−−→
σA, µA

Check µA

accept← true

terminate← true terminate← true

sk = SessionKey(K)
sid = s, Alice, Bob, X0, X1, Y0, Y1, σA, σB , µA, µB

where SessionKey(K) = PRFK(0), MacKey(K) = PRFK(1)
[R]abs is the abscissa of the point R in Fp

x ◦ P is the abscissa of x times a point P whose abscissa is P

and when a check fails whithout being caught, one stops the
execution: terminate← true

Fig. 1. An honest execution of the “Twist-AUgmented” Authenticated Diffie-Hellman protocol.
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A Definitions

In this section, we give some definitions.

Definition 14 (Pseudo-Random Functions). A pseudo-random function family (PRF) is a family
of functions F = (fk)k in Fn,m, the set of the functions from {0, 1}n into {0, 1}m, indexed by a key
k ∈ {0, 1}`, so that for a randomly chosen `-bit string key k, no adversary can distinguish the function

fk from a truly random function in Fn,m: Adv
prf
F (D, q) = |Prk[1← Dfk ]−Prf [1← Df ]| must be small,

where D is a distinguisher, with an oracle access to either a random instance fk in the given family F
or a truly random function f in Fn,m, and must distinguish the two cases with at most q queries to
the function oracle. We say that such a family is a (q, ε, t)-PRF if for any distinguisher asking at most
q queries to the oracle, its advantage is less than ε, after a running time bounded by t.

The goal of a randomness extractor is to derive, from an element with some entropy, a bit string
which is uniformly distributed, or at least close to the uniform distribution. We thus define the distance
to measure how close are two distributions.

Definition 15 (Statistical Distance). If D is a distribution over some finite set S and s ∈ S,
then we denote by D(s) the probability of s according to D and similarly, if X ⊆ S, then D(X) =
∑

s∈X D(s).
Let D1,D2 be two distributions over some finite set S. The statistical distance between D1,D2, is

defined as

|D1 −D2| =
1

2
·
∑

s∈S

|D1(s)−D2(s)| = max
X⊆S

|D1(X) −D2(X)|.

We say that a random variable X on S is δ-uniform if the statistical distance between X and the
uniform distribution on S is equal to δ.

Definition 16 (Almost Universal Hash Functions). Let H = (hk)k be a family of functions in
Fn,m, the set of the functions from {0, 1}n into {0, 1}m, indexed by a key k ∈ {0, 1}`. We say that H
is an ε-almost universal hash (ε-AUH) function family if

for any x, y ∈ {0, 1}n, x 6= y,Pr
k

[hk(x) = hk(y)] ≤ 1

2m
+ ε.

Note that such a family is called a universal hash function family if ε = 0.
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Definition 17 (Min and Renyi Entropy [34]). Let X be a random variable taking values on a
finite set S. We define the guessing probability γ(X) of X and the collision probability κ(X)
of X as γ(X) = maxs∈S{Pr[X = s]} and κ(X) =

∑

s∈S Pr[X = s]2. The min entropy of X is
H∞ = log2(1/γ(X)) while the Renyi entropy is H2 = log2(1/κ(X)), and we have the following
inequality γ(X)2 ≤ κ(X) ≤ γ(X).

B Authenticated Key Exchange

An algorithm for key exchange is an interactive protocol between two players A (for Alice) and B
(for Bob) at the end of which they both share a session key sk. Each of the players may have several
instances involved in distinct, possibly concurrent, executions of the protocol. Instances of party A
(resp. B) are modeled by oracles [7, 8], denoted Π i

A (resp. Πj
B), or by Π when we consider any player’s

instance.

B.1 The Communication Model

During executions of this protocol, the adversary has the entire control of the network, and tries
to break the privacy of the key (semantic security) or the authentication of the players (mutual

authentication). To model the various capabilities of the adversary, several queries are available to the
latter:

– Execute(A, i,B, j): This query models passive attacks, where the adversary gets access to honest
executions of the protocol between the i-th instance of A (Π i

A) and the j-th instance of B (Π j
B),

by eavesdropping for example.
– Reveal(U, i): This query models the misuse of the session key by the i-th instance of U (either A

or B). Our model thus encompasses the so-called known-key attacks. The query is only available
to the adversary if the attacked instance actually “holds” a session key. It then releases the latter.
During the protocol, the instance will claim that it actually holds a session key when it flips the
flag accept to true. This may never happen if the instance detects that the other party does not
behave honestly: it then terminates without accepting (the flag terminate changes to true, while
the flag accept remains to false.) A Reveal-query asked to such a player is answered by ⊥.

B.2 Session Key Privacy

The first goal of an adversary is to break the privacy of the session key (a.k.a., semantic security): it
wants to learn some information about it. Such a security notion is modeled by the game Gameake(A),
in which one more query is available to the adversary A: the Test-query. This query Test(U, i) can be
asked at most once, on an instance of any party which actually holds a fresh session key. The freshness
notion (which will be defined more precisely later, with the partnering relation) roughly means that
the session key is not “obviously” known to the adversary. This query is answered as follows: one
flips a (private) coin b and forwards sk (the value Reveal(U, i) would output) if b = 1, or a uniformly
distributed random value if b = 0.

When playing this game, the goal of the adversary is to guess the bit b involved in the Test-query,
by outputting its guess b′. We denote the AKE advantage against a protocol P as the probability
that A correctly guesses the value of b. More precisely, we define Advake

P (A) = 2Pr[b = b′]− 1.

B.3 Active Adversaries

Classical attacks in key exchange protocols are the so-called “man-in-the-middle” attacks. They do
not involve a simple passive adversary, but an adversary which intercepts, replays, modifies or creates
flows from/to Alice to/from Bob. We thus consider the powerful query
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– Send(U, i,m): this allows the adversary A to send a message to the i-th instance of U . The
adversary A gets back the response this instance generates in processing the message m according
to the protocol and its current state. A query Send(A, i, Start) initiates a key exchange execution,
and thus the adversary receives the initial flow the player A should send out to the player B (we
assume here that Alice is the initiator.)

When considering active adversaries, the Execute-query becomes useless, since using the Send-
query, and relaying the flows, the adversary has the ability to carry out honest executions among
parties. We can thus forget the former one in our model. Note however that Execute-queries are of
major interest when dealing with password-based authentication. In such a case, it is indeed important
to distinguish passive and active attacks.

B.4 Authentication

Another goal for an adversary may also be to break the authentication of the players (impersonate
a player, or simply make a player to share a key with nobody —unknown-key attacks—, or a non-
intended partner —miss-binding identity attacks—). The mutual authentication is the formal security
notion which prevents all these kinds of attacks. More precisely, a key exchange scheme achieves mu-
tual authentication if any party who terminates has an accepting partner. Combined with semantic
security which roughly means that nobody except the intended partners knows the key, it guaran-
tees any terminating party that the intended partner actually knows the key, and nobody else has
any information about it. This is usually achieved by additional rounds in which parties prove their
knowledge of the key material to their partners: key confirmation rounds.

Note however that even if one is only interested in the privacy of the keys under active attacks,
players have to authenticate themselves in some way. Otherwise, it would be easy for the adversary
to impersonate Bob to Alice, and thus finally share a key with Alice, while the latter has no partner
(except the adversary). Since the adversary knows the key, he definitely can distinguish it in the Test-
query asked to Alice. Therefore, while semantic security does not guarantee a strong authentication
(a.k.a. explicit authentication) it still ensures an implicit one: when Alice accepts a key, it can also be
known to Bob only (but to nobody else, and maybe Bob neither.)

B.5 Freshness and Partnering

We restricted the Test-query on fresh keys. Indeed, if Π i
A and Πj

B agreed on a session key sk, a
query Reveal(A, i) provides this session key sk to the adversary. Thereafter, a Test(B, j) (or a fortiori

Test(A, i)) would immediately leak all the information about the bit b. This is however the only
restriction: a key is said to be fresh if neither the instance or its partner has been asked for a Reveal-
query.

Therefore, a new notion of partnership appears. We say that two instances are partners if they
have been involved in the same session of the protocol, which is named by its session ID or sid,
defined as the (common) view of the execution: the concatenation of the crucial flows. The crucial

flows are the required flows for achieving acceptance from both sides.

C Security Notions and Computational Assumptions

In this section we review the cryptographic primitives (Signatures, Message Authentication Codes
(MACs)) and the Diffie-Hellman intractability assumptions.

C.1 Signature Schemes

A signature scheme SIG = (SIG.Key,SIG.Sign,SIG.Verify) is defined by the three following algorithms:
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– The key generation algorithm SIG.Key. On input 1k, the algorithm SIG.Key produces a pair (pk, sk)
of matching public (verification) and private (signing) keys.

– The signing algorithm SIG.Sign. Given a message m and a pair of matching public and private
keys (pk, sk), SIG.Sign produces a signature σ. The signing algorithm might be probabilistic.

– The verification algorithm SIG.Verify. Given a signature σ, a message m and a public key pk,
SIG.Verify tests whether σ is a valid signature of m with respect to pk.

Several security notions have been defined about signature schemes, mainly based on the seminal work
of Goldwasser et al [20]. It is now classical to ask for the impossibility of existential forgeries, even for
adaptive chosen-message adversaries:

– An existential forgery is a new message-signature pair, valid and generated by the adversary. The
corresponding security level is called existential unforgeability (EUF).

– The verification key is public, including to the adversary. But more information may also be
available. The strongest kind of information is definitely formalized by the adaptive chosen-message

attacks (CMA), where the attacker can ask the signer to sign any message of its choice, in an
adaptive way.

As a consequence, we say that a signature scheme is secure if it prevents existential forgeries, even
under adaptive chosen-message attacks.

C.2 Message Authentication Codes

A Message Authentication Code MAC = (MAC.Sign,MAC.Verify) is defined by the two following
algorithms, with a secret key sk uniformly distributed in {0, 1}`:
– The MAC generation algorithm MAC.Sign. Given a message m and secret key sk ∈ {0, 1}`,

MAC.Sign produces an authenticator µ. This algorithm might be probabilistic.
– The MAC verification algorithm MAC.Verify. Given an authenticator µ, a message m and a secret

key sk, MAC.Verify tests whether µ has been produced using MAC.Sign on inputs m and sk.

As for signature schemes, the classical security level for MAC is to prevent existential forgeries, even
for an adversary which has access to the generation and the verification oracles.

C.3 Authentication Schemes

In this section, we simply unify the two above primitives, so that analyses in this paper are quite
general (in the symmetric or the asymmetric settings.) We thus define an authentication scheme by
three algorithms AUTH = (AUTH.Key,AUTH.Sign,AUTH.Verify):

– The key generation algorithm AUTH.Key. On input 1k, the algorithm AUTH.Key produces a pair
(vk, sk) of matching verification and signing keys (they can be either the same or different.)

– The signing algorithm AUTH.Sign. Given a message m and the signing key sk, AUTH.Sign produces
an authenticator σ.

– The verification algorithm AUTH.Verify. Given an authenticator σ, a message m and a verification
key vk, AUTH.Verify tests whether σ is a valid authenticator of m with respect to vk.

Such an authentication scheme is said to be secure if it prevents existential forgeries, even for an
adversary which has access to the signing and the verification oracles. This is measured by

Succeuf−cma
AUTH (A, qs, qv) = Pr

[

(vk, sk)← AUTH.Key(1k), (m,σ)← AAUTH.Sign(sk;·),AUTH.Verify(vk;·,·) :
AUTH.Verify(vk;m,σ) = 1

]

,

where the adversary can ask up to qs and qv queries to the signing and verification oracles AUTH.Sign

and AUTH.Verify respectively.
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C.4 Computational Assumptions

When one deals with key exchange, the classical problem which arises is the problem introduced by
Diffie-Hellman in the seminal paper about asymmetric cryptography [14]. More formally, we consider
a finite cyclic group G of prime order q with a generator g, which we denote multiplicatively in this
definition: G = (〈g〉,×). Two problems are usually assumed to be intractable, in well-chosen groups:

– the Computational Diffie-Hellman Problem, in which given random elements gx and gy in G, one
wants to find DH(gx, gy) = gxy. The actual intractability is measured, for any adversary A, by

Succcdh
g,G(A) = Pr[x, y

R← Zq : DH(gx, gy)← A(gx, gy)].

– the Decisional Diffie-Hellman Problem, in which given random elements gx and gy in G, and a
candidate gz for the value DH(gx, gy), one should guess whether this is the actual solution or not.
The actual intractability is measured, for any distinguisher D, by

Advddh
g,G(D) =

∣

∣

∣
Pr[x, y

R← Zq : 1← D(gx, gy , gxy)]− Pr[x, y, z
R← Zq : 1← D(gx, gy , gz)]

∣

∣

∣
.

In the following, we work on elliptic curves, which groups are usually denoted in an additive way:
G = (〈P〉,+). The latter problem can be stated as follows by adapting the notations: in the Elliptic

Curve Decisional Diffie-Hellman Problem, given random elements x ·P and y ·P in the group of points
G, of order q, and a candidate z ·P for the value ECDH(x ·P, y ·P), one should guess whether this is
the actual solution or not. The intractability is measured, for any distinguisher D, by the advantage
Advecddh

P,G (D) defined as above.

Note 18. We insist here on the well-known fact that the intractability of any decisional Diffie-Hellman
problem just means that the Diffie-Hellman value is indistinguishable from a random element in the
cyclic group. It does not mean that the encoding of a Diffie-Hellman value is indistinguishable from a
random bit-string [32].

C.5 Upper-Bounds for Time-Constrained Adversaries

As usual, for all the above success probabilities or advantages, we denote by Succ(t, . . .) and Adv(t, . . .)
the maximal probabilities over all the adversaries which running time is bounded by t.

D Proof of Theorem 13

Let A be an adversary, and let G0 be the original AKE attack game. Let b and b′ be as defined in the
security model (see appendix B), and let S0 be the event that b = b′.
Game G0 : This is the real protocol. In this game, we are interested in the event S0, which occurs if
b = b′ in this game, where b is the bit involved in the Test-query and b′ is the output of the adversary
A.
Game G1 : In this game, we just go back to the less efficient version, where one works with real
points Xi and Yi instead of the abscissae Xi and Yi, and thus with Ki, the Diffie-Hellman value of
Xi and Yi, and Ki = [Ki]abs. It does not affect the probabilities at all, but may double the time of
the simulations.
Game G2 : We modify the oracle instances as follows. If the adversary submits a new authenticator
(σA or σB) which has not been previously generated by an oracle, and thus our simulation, then in
game G2, we reject it and the instance we are simulating (and which receives such a forged message),
stops: it terminates without accepting.

Let F2 be the event that in game G2 an authenticator is rejected that would not have been
rejected under the rules of game G1. Since these two games proceed identically until F2 occurs,

17



we have Pr[S1 ∧ ¬F2] = Pr[S2 ∧ ¬F2], and applying Lemma 1 of [33, 35] with (S1, S2, F2), we have
|Pr[S1]− Pr[S2]| ≤ Pr[F2]. From the following lemma, one immediately gets:

|Pr[S1]− Pr[S2]| ≤ 2 · Succeuf−cma
AUTH (2t, qs, qs). (1)

Lemma 19.
Pr[F2] ≤ 2 · Succeuf−cma

AUTH (2t, qs, qs).

Proof. We want to bound Pr[F2]. This probability is bounded by the probability that an adversary A′
can forge an authenticator under a chosen-message attack. In this case, A′ accesses a signing oracle
and tries to forge a new authenticator. At the beginning, A′ picks at random a bit b and according
to this bit, it plays the role of an adversary against either A or B authentication. If b = 0, then A ′
uses the signing oracle to simulate A authenticators, but knows the signing key of B, and if b = 1,
A′ uses the signing oracle to simulate B authenticators, but knows the signing key of A. It is easy
to check that all the Reveal(U, i), Send(U, i,m) and Test(U, i) queries will be perfectly simulated and
there is no way for A to guess which of the two signing keys are known, and thus which of the two
authentication schemes we try to break. Consequently, if the event F2 happens, the adversary A has
been able to forge an authenticator either for A or B. If the forgery is an authenticator under the
unknown signing key, then A′ can win the game; otherwise he cannot do anything with the forgery. On
average, by running twice the algorithm A′, he will forge an authenticator. If A makes qs Send-queries,
then A′ runs in the same time (less than 2t since the previous game), since exactly the same number
of authenticators have to be generated. Therefore,

Succeuf−cma
AUTH (2t, qs, qs) ≥ Succ(A′, qs) = Pr[A′ forges]

≥ Pr[A′ forges A ∧ b = 0] + Pr[A′ forges B ∧ b = 1]

≥ 1

2
· Pr[A′ forges A] +

1

2
· Pr[A′ forges B] =

1

2
· Pr[A forges] =

1

2
· Pr[F2].

ut

Game G3 : As already noticed, the way the curve we will actually work on is selected may not be
uniformly distributed: the two MAC values µB (with d = 0 and d = 1) may be equal, and then the
wrong one may be chosen by Alice. In such a case, Alice and Bob may then agree on different keys
(if the two MAC values µA on the two curves are equal too!). We show here this situation is quite
unlikely.

More precisely, we cancel games where the two MAC values µB (for d = 0 and d = 1) would be
equal. But since the points X0, X1, Y0 and Y1 are authentic (falsifications have been excluded in the
previous game), they are uniformly distributed, and thus K0 and K1 too. As a consequence, for any
session K0, and K1 respectively, is uniformly distributed in X0, and X1 respectively. We are interested
in the probability for µ0 = MAC.Sign(k0; (“1”, s,Bob)) (the value of µB for d = 0) to be equal to
µ1 = MAC.Sign(k1; (“1”, s,Bob)) (the value of µB for d = 1):

δ = Pr[µ0 = µ1 |Ki
R← Xi, ki = PRFKi

(1)] = Pr[µ0 = µ1 |Ki ∈ Xi,Ki
R← Fp, ki = PRFKi

(1)]

= Pr[µ0 = µ1 ∧K0 ∈ X0 ∧K1 ∈ X1 |Ki
R← Fp, ki = PRFKi

(1)] × 2p

p + 1− t
× 2p

p + 1 + t

< 5× Pr[µ0 = µ1 |Ki
R← Fp, ki = PRFKi

(1)] if p > 5

Using Lemma 8 and the PRF property, for any event Ev about ki, verifiable within time T (we first
replace the random choice of the Ki’s in Fp by a random choice in {0, 1}`, and then the deterministic
computation of the ki’s by a random choice):

Pr[Ev |Ki
R← Fp, ki = PRFKi

(1)] ≤ Pr[Ev |Ki
R← {0, 1}`, ki

R← {0, 1}m] + 2/
√

2` + 2× Adv
prf
F (T, 1).
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As a consequence,

δ ≤ 5×
(

Pr[µ0 = µ1 | k0, k1
R← {0, 1}m] + 2/

√
2` + 2× Adv

prf
F (2t, 1)

)

.

But Pr[µ0 = µ1 | k0, k1
R← {0, 1}m] is clearly bounded by Succeuf−cma

MAC (2t, 1, 0), where the adversary
chooses a random key, and computes the MAC value with this random key, expecting the result to be
the same as for the unknown key.

δ ≤ 5× Succeuf−cma
MAC (2t, 1, 0) + 10× Adv

prf
F (2t, 1) + 10/

√
2`. (2)

Game G4 : In this game, we try to avoid the use of the discrete-log of the elements X0,X1,Y0,Y1.
We thus introduce two random DDH triples (X,Y,Z) and (X̃, Ỹ, Z̃): the first one on the elliptic
curve E and the second on the twisted curve Ẽ. Then, using the classical random self-reducibility of
the Diffie-Hellman problem, one can introduce the above triples in all the sessions which can be tested
by the adversary. We do not need to modify the other sessions.

The complete behavior of our simulation in this game is described in Appendix E. It is then clear
that games G3 and G4 are equivalent, since we have consistently replaced one set of random variables
by another set of identically distributed random variables. In particular, Pr[S3] = Pr[S4], but the time
complexity is increased by a an additional term 8qsTm.
Game G5 : Game G5 is exactly the same as game G4, except that in all the rules, we use a random
triple (X,Y,Z) coming from a random distribution (x ·P, y ·P, z ·P), instead of a DDH triple. The
distance between the two games is clearly bounded by the advantage of any adversary against the
DDH (see Appendix F):

|Pr[S4]− Pr[S5]| ≤ Advecddh
P,〈P〉(2t + 8qsTm). (3)

Game G6 : The modification between games G6 and G5 is the same that between G5 and G4, except
that instead of replacing a DDH triple by a random triple on the elliptic curve E, we do the same on
the triple on the twisted Ẽ. Hence, we have

|Pr[S5]− Pr[S6]| ≤ Advecddh
Q,〈Q〉(2t + 8qsTm). (4)

Game G7 : In this game, we modify the generation of the master key K in each session by picking
at random in Fp instead of as [Z]abs. Granted to the random-self reducibility property used in game
G4 (described in Appendix E), the Z’s are random elements on the curves. According to Lemma 10,
used qs successive times (hybrid argument [19])

|Pr[S6]− Pr[S7]| ≤
qs√
2`−1

. (5)

Game G8 : In this game, we modify the generation of the master key K in each session by picking at
random in {0, 1}` instead of as random in Fp. This is done independently for each session. According
to Lemma 8, used qs successive times (hybrid argument [19])

|Pr[S7]− Pr[S8]| ≤
qs√
2`

. (6)

Game G9 : In this game, instead of using the PRF in order to generate the MAC key km and the
session key sk, we pick random values in {0, 1}n. We use a classical hybrid argument [19] in order to

prove that the difference between game G8 and G9 is qs × Adv
prf
F (A, 2).

|Pr[S8]− Pr[S9]| ≤ qs × Adv
prf
F (A, 2). (7)

It is also clear that in game G9, the hidden bit b of the Test-query is independent of all values
directly or indirectly accessible to the adversary. Hence, Pr[S9] = 1/2. Combined with Equations (1),
(2), (3), (4), (5), (6) and (7), it gives the expected result.
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E Random Self-Reducibility

Game G4 is identical to game G3, except that we apply the following special rules when dealing with
the Reveal(U, i), Test(U, i) and Send(U, i,m) queries :

R1: When processing a Send(A, i, Start) query, the simulator picks four random values a0, x0
R← Zq

and a1, x1
R← Zq̃, computes X0 = a0 ·X + x0 · P and X1 = a1 · X̃ + x1 · Q, and stores in some

X-table (a0, x0,X0) and (a1, x1,X1).

R2: When processing a Send(B, j, (s,X0,X1)) query,

– if the two elements X0 and X1 have been computed by our simulator and thus have been
stored in the X -table, then it generates the same way its answer by choosing four random

values b0, y0
R← Zq and b1, y1

R← Zq̃, it computes Y0 = b0 ·Y + y0 ·P and Y1 = b1 · Ỹ + y1 ·Q,
and stores in some Y-table (b0, y0,Y0) and (b1, y1,Y1). It can now compute Z0 = a0b0 · Z +
x0b0 ·Y + a0y0 ·X + x0y0 ·P and Z1 = a1b1 · Z̃ + x1b1 · Ỹ + a0y1 · X̃ + x1y1 ·Q.

– if one of the elements X0 or X1 has not been previously computed by our A-simulation, then
it proceeds as in the game G3.

In the first case, the simulator uses the key Z0 or Z1 as a master key according to be bit β whereas
in the second case, the master key will be calculated as in the previous game.

R3: When processing a Send(A, i, (s,Y0,Y1, Bob, σB , µB)), then if the authenticator is correct, we
can assume that the corresponding values (X0,X1,Y0,Y1,Z0,Z1) have been computed by the
simulator: we can compute the master key, and thus compute and check the MAC to determine
the bit d, if it exists.

R4: When processing a Test(U, i)-query, we know that such a query can only be asked on accepting
instance, and accepting session can only happen when the simulator knows the correct value Zd

and can answer such query as in the game G3.

R5: When processing a Reveal(U, i)-query, as in the rule R4, the simulator is able to answer such
queries as in the previous game.

It is easy to see that in the second case of rule R2, as in game G3, the adversary will not been able to
forge an authenticator, and then he will not be able to generate a correct third message. Consequently,
the session will not be accepted by any party and so the adversary will not be able to send a Test-query
to any instance. Hence, the simulation will be consistent.

F The DDH Distinguisher

We assume that A is an attacker that breaks the AKE security game with a different advantage in
Game G5 than in Game G4, then we construct an adversary A′ which is able to distinguish triples
coming from either a DDH or a random distribution: at the beginning of the experiment, A ′ receives a
triple (X,Y,Z) which is a DDH triple if b = 0 or a random triple if b = 1. Then A′ runs the attacker
A using this triple to simulate all the queries as in the previous game (with is actually either the
previous game if b = 0 or the current game if b = 1).. When the Test(U, i)-query happens, A ′ picks a
bit at random b′ and sends according to b′ either the real session key if b′ = 0 or a random session key.
Eventually, A will reply with a bit b′′. Finally, if b′ = b′′, then A′ returns a bit b? = 1, else it returns
b? = 0.

Pr[b? = b] =
1

2
· (Pr[b? = 0|b = 0] + Pr[b? = 1|b = 1]) =

1

2
·
(

Pr[b′ = b′′|DDH] + Pr[b′ 6= b′′|Rand]
)

=
1

2
·
(

Pr[b′ = b′′|DDH] + 1− Pr[b′ = b′′|Rand]
)

=
1

2
· (Pr[S2] + 1− Pr[S3]) .
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G Distribution of the Preliminary Secret

In this section we show that the distribution of the preliminary secret key K is statistically indistin-
guishable from the uniform distribution on {0, 1}`. On the one hand, we prove that it is statistically
indistinguishable from the uniform distribution on {0, . . . , p− 1} and then that the latter distribution
is statistically indistinguishable from the uniform distribution on {0, 1}`.

Let us denote by D the distribution of K:

D = {b R← {0, 1},R0
R← E,R1

R← Ẽ : K = [Rb]abs}
= {b R← {0, 1}, x0

R← [E]abs, x1
R← [Ẽ]abs : K = xb}.

G.1 Proof of Lemma 10

In this proof, we note E0 = [E]abs and E1 = [Ẽ]abs. Then, we have Fp = E0 ∪E1. As already noticed,
#E = p+1−t = q and #Ẽ = p+1+t = q̃, where t is less than 2

√
p. Then #E0 = q/2 and #E1 = q̃/2,

since one abscissa corresponds to two points on the elliptic curves. We thus have

δ =
1

2
×

∑

x∈Fp

∣

∣

∣

∣

∣

Pr
K

R
←Up

[K = x]− Pr
K

R
←D

[K = x]

∣

∣

∣

∣

∣

=
1

2
×

∑

x∈Fp

∣

∣

∣

∣

∣

1

p
− Pr

b
R
←{0,1}

[x0
R← E0, x1

R← E1 : x = xb]

∣

∣

∣

∣

∣

=
1

2
×

∑

x∈E0

∣

∣

∣

∣

∣

1

p
− Pr

b
R
←{0,1}

[xi
R← Ei : x = xb]

∣

∣

∣

∣

∣

+
1

2
×

∑

x∈E1

∣

∣

∣

∣

∣

1

p
− Pr

b
R
←{0,1}

[xi
R← Ei : x = xb]

∣

∣

∣

∣

∣

=
1

2
×

∑

x∈E0

∣

∣

∣

∣

1

p
− 1

2
× Pr[x0

R← E0 : x = x0]

∣

∣

∣

∣

+
1

2
×

∑

x∈E1

∣

∣

∣

∣

1

p
− 1

2
× Pr[x1

R← E1 : x = x1]

∣

∣

∣

∣

=
q

4
×

∣

∣

∣

∣

1

p
− 1

2
× 2

q

∣

∣

∣

∣

+
q̃

4
×

∣

∣

∣

∣

1

p
− 1

2
× 2

q̃

∣

∣

∣

∣

=
q

4
×

(

1

q
− 1

p

)

+
q̃

4
×

(

1

p
− 1

q̃

)

=

(

1

4
− q

4p

)

+

(

q̃

4p
− 1

4

)

=
q̃ − q

4p
=

2t

4p
≤
√

p

p
≤ 1√

p
≤ 1√

2`−1
.

ut

G.2 Proof of Lemma 8

Now, we prove that the statistical distance between the uniform distribution in the space Fp ∼ Zp and
the uniform distribution in the space {0, 1}` ∼ {0, . . . , 2`−1}, where 2`− ε ≤ p < 2` and 0 < ε ≤ 2`/2,
is less than 1/

√
2`.

δ′ =
1

2
×

∑

x∈{0,1}`

∣

∣

∣

∣

∣

∣

Pr
X

R
←U

2`

[X = x]− Pr
X

R
←Up

[X = x]

∣

∣

∣

∣

∣

∣

=
1

2
×

∑

x∈{0,1}`

x<p

∣

∣

∣

∣

∣

∣

Pr
X

R
←U

2`

[X = x]− Pr
X

R
←Up

[X = x]

∣

∣

∣

∣

∣

∣

+
1

2
×

∑

x∈{0,1}`

x≥p

∣

∣

∣

∣

∣

∣

Pr
X

R
←U

2`

[X = x]− Pr
X

R
←Up

[X = x]

∣

∣

∣

∣

∣

∣

=
1

2
×

∑

x∈{0,1}`

x<p

∣

∣

∣

∣

1

2`
− 1

p

∣

∣

∣

∣

+
1

2
×

∑

x∈{0,1}`

x≥p

∣

∣

∣

∣

1

2`
− 0

∣

∣

∣

∣

=
1

2
× p×

∣

∣

∣

∣

1

2`
− 1

p

∣

∣

∣

∣

+
1

2
× (2` − p)× 1

2`

≤ 2` − p

2`
≤ ε

2`
≤ 1√

2`
.

ut
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H An Example 200-bit Pair of Curve and Twist

We give a pair of curve and twist suitable for implementing the TAU protocol. This curve was produced
using the method sketched in Section 4.1. We choose a curve with a = −3, to allow the use of the fast
projective group law.

Let ` = 200, and let p = 2` − 978579. Let b in Fp be given by

b = 386119362724722930774569388602676779780560253666503462427823.

The trace of the curve E of equation y2 = x3 − 3x + b, is

tE = −1864972684066157296039917581949.

Hence, the group orders of E and of its twist Ẽ are p + 1± tE, which are both prime numbers.

22


